GCSE MARKING SCHEME

SCIENCE- PHYSICS

JANUARY 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2015 examination in GCSE SCIENCE - PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Physics 1 (Foundation Tier) 1
Physics 1 (Higher Tier) 6
Physics 2 (Foundation Tier) 11
Physics 2 (Higher Tier) 15

January 2015

FOUNDATION TIER

Question			Marking details	Marks
1			All four correct - 3 marks 2 or 3 correct - 2 marks 1 correct - 1 mark AWARD a MAXIMUM OF 3 marks	3 [3]
2.	(a) (b)		Ticks in boxes 1,5 and 6 (3) 1 mark penalty for any extra tick. Has to travel back / distance travelled by the signal is double the height of the satellite above the earth. Don't accept travel further / take longer / double the time Question total	3 1 [4]
3.	(a) (b)	(i) (ii)	lead, aluminium, beta, gamma. Accept symbols β and γ All four correct - 3 marks 2 or 3 correct - 2 marks 1 correct - 1 mark AWARD a MAXIMUM OF 3 marks [Radioactive decay is] a random (haphazard or unpredictable) [process] Don't accept taken at different times / not the same $\text { mean }=\frac{30(1)}{60}(1)=[0.5 \text { counts } / \mathrm{s}]$ Award 1 mark for 30 wherever it appears (if nothing else shown) Award 1 mark for division by 60 Award 2 marks for an answer only of 0.5 [counts/s]	3 1 1

	stio		Marking details	Marks
		(iii)	rocks / cosmic / radon / food / Sun / buildings Accept soil / ground / correctly named rocks e.g. granite Don't accept Earth / air / named foods Question total	1 [7]
4.	(a) (b) (c)	(i) (ii) (i) (ii)	700 [security light] (1), 700 [microwave] (1) Watt[s] Accept wat $\%$ efficiency $=\frac{80}{200}(1-$ subs $)[\mathrm{x} \mathrm{100}]=40(1)$ Award 1 mark for an answer of 0.4 Units $=1 \times 4(1)=4$ (1) Award 1 mark for an answer only of 4000 (i.e. no workings shown). Don't award any marks for an answer only of 40 or 400. cost $=4$ (ecf) $\times 15=60$ Mark is for the answer Accept $£ 0.60$ Don't accept $£ 0.60$ p	2 1 2 2 1 [8]
5.	(a) (b)	(i) (ii) (iii)	$\begin{aligned} & 1000 \\ & 1000(\text { ecf }) \times 0.7(1-\text { subs })=700\left[\mathrm{~km}^{2}\right](1-\text { answer }) \\ & \frac{60}{20}(1) \times 1000(\text { ecf })=3000[1-\text { answer }] \end{aligned}$ Answer of 3 award 1 mark Wind doesn't always blow / nuclear runs all of the time / takes less ground space / fewer habitats destroyed / total commissioning cost is less / longer lifetime. Accept more reliable / bigger power [output] / bigger energy [output] / more electricity.	1 2 2 1 [6]
6.	(a) (b)	(i)	[A system of] cables/wires (1) Accept power lines from power stations (1) to consumers/users (1) (accept 2 named consumers e.g. schools, hospitals, factories, houses) They step up (increase) the voltage Don't accept increase the voltage and power / decrease the current	3 1

\begin{tabular}{|c|c|c|c|c|}
\hline \& stio \& \& Marking details \& Marks \\
\hline \& (c) \& (ii)
(i)
(ii) \& \begin{tabular}{l}
To reduce energy losses / heat losses / to improve efficiency / prevent overheating \\
Don't accept any reference to stopping energy / heat losses \\
50000 at \(\mathrm{A}, 132000\) at B, 230 at C \\
2 marks for all 3, 1 mark for 1 or 2 correct. \\
AWARD a MAXIMUM OF 2 marks \\
Step-up transformer \\
Question total
\end{tabular} \& 1

2
1
$[8]$

\hline 7. \& (a)
(b)

(c) \& \& \begin{tabular}{l}
Can cause cancer / deform babies (1) because they ionise or damage or mutate or kill cells / ionising (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark.

Abdomen [X-ray] (1) because it causes the largest received dose / highest dose or units / most days of radiation [given to the patient] (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark.

Don't accept just a reference to 225
$$
\frac{140}{2}(1-\text { subs })=70(1)
$$

210 days (1)(ecf) $3 \times$ answer to (i)) $\times 43200=9072000$ [counts] (1)

Award 1 mark for [70 (ecf) $\times 43200$] $=3024000$

Award 1 mark for $[3 \times 43200]=129600$

 \&

2

2

2

2

[8]
\end{tabular}

\hline 8. \& (a) \& (i)

(ii) \& | Circulation of air from the radiator inside the room (1) arrows in clockwise direction (1) |
| :--- |
| Air heated all along floor /air heated over bigger area (1) so rises at all points (everywhere) / more convection currents (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark. |
| Don't accept heat rises or air in the room heats up faster | \& 2

\hline
\end{tabular}

Question		Marking details	Marks
(b)	(i)	Plots (allow \pm 1/2 small square division) (2) -1 for each error to a maximum of 2. No penalty for missing origin plot. Straight line (1) (ruler must be used) line must be extended back towards origin (ii) Award 2 marks for: They're proportional OR As the area doubles the power doubles OR As the area increases the power increases at a constant rate OR Power = area \times 150	3
(c)	Award 1 mark for: As the area increases so does the power OR Power α (iii) wire gird 1 800 [W] Indicative content: Conduction and radiation will take place in all directions from the hot wire grid. The wire grid is at a higher temperature than the bottom surface of the concrete floor. This temperature difference causes energy to flow down through the floor. The foam insulation reduces heat transfer through the concrete by conduction. The silver foil reduces heat loss because it reflects radiant heat back up into the room. 5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. $3-4$ marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.	2	

Question		Marking details	Marks
	$\mathbf{1 - 2}$ marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.	Question total	[16]
		FOUNDATION TIER PAPER TOTAL	[60]

HIGHER TIER

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
Can cause cancer / deform babies (1) because they ionise or damage or mutate or kill cells / ionising (1) The \(2^{\text {nd }}\) mark must be linked to the \(1^{\text {st }}\) mark. \\
Abdomen [X -ray] (1) because it causes the largest received dose / highest dose or units / most days of radiation [given to the patient] (1) The \(2^{\text {nd }}\) mark must be linked to the \(1^{\text {st }}\) mark. \\
Don't accept just a reference to 225
\[
\frac{140}{2}(1-\text { subs })=70(1)
\] \\
210 days (1)(ecf) \(3 \times\) answer to (i)) \(\times 43200=9072000\) [counts] (1) \\
Award 1 mark for [70 (ecf) \(\times 43200]=3024000\) \\
Award 1 mark for \([3 \times 43200]=129600\) \\
Question total
\end{tabular} \& 2
2
2

2
2
2
[8]

\hline 2. \& (a)

(b) \& (i)

(ii)

(i) \& | Circulation of air from the radiator inside the room (1) arrows in clockwise direction (1) |
| :--- |
| Air heated all along floor /air heated over bigger area (1) so rises at all points (everywhere) / more convection currents (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark. |
| Don't accept heat rises or air in the room heats up faster |
| Plots (allow $\pm 1 / 2$ small square division) (2) -1 for each error to a maximum of 2 . No penalty for missing origin plot. |
| Straight line (1) (ruler must be used) line must be extended back towards origin | \& 2

2
3

\hline
\end{tabular}

Question		Marking details	Marks
(c)	(ii)	Award 2 marks for: They're proportional OR As the area doubles the power doubles OR As the area increases the power increases at a constant rate OR Power = area $\times 150$ Award 1 mark for: As the area increases so does the power OR Power α wire gird	2
	(iii)	1800 [W]	1
		Indicative content:	6
		Conduction and radiation will take place in all directions from the hot wire grid. The wire grid is at a higher temperature than the bottom surface of the concrete floor. This temperature difference causes energy to flow down through the floor. The foam insulation reduces heat transfer through the concrete by conduction. The silver foil reduces heat loss because it reflects radiant heat back up into the room. 5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	
		3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.	
		Question total	[16]

\begin{tabular}{|c|c|c|c|}
\hline \& \& Marking details \& Marks

\hline 3. \& (i)

(ii)

(iii) \& | Electricity is transmitted at high (increases the) voltages (1) to reduce the current (1). This reduces energy losses due to heat (1). Either the $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark or the $3^{\text {rd }}$ mark must be linked to the $2^{\text {nd }}$ mark. If reference to power increasing is made the maximum mark that can be awarded is 2. |
| :--- |
| Don't accept any reference to stopping energy losses $3950 x\left(\frac{92}{100}\right)(1-\text { substitution })=3634[\mathrm{MW}](1)$ |
| EITHER: $230 \times 80=18400$ [W] (1) |
| Then pair of values with consistent units $\text { e.g } \frac{3634}{0.0184} \text { or } \frac{3634000}{18.4} \text { or } \frac{3634000000}{18400}(1)=197500(1)$ |
| (allow ecf from (ii) and on 18 400) $\text { OR: current }=\frac{3634000000(1)}{230(1)}, \frac{15800000}{80}=197500(1)$ |
| N.B. mark after 230 moves to after the $2^{\text {nd }}$ division |
| Award 2 marks for an answer of 214674 | \& 3

2

3

[8]

\hline 4. \& (i)
(ii)

(iii) \& | $\underline{2.22 \times 10^{6} \text { years Don't accept light years }}$ |
| :--- |
| Atoms of gas (1) absorb light (1) at certain wavelengths / frequencies / colours accept re-emitted in all directions (1) Either the $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark or the $3^{\text {rd }}$ mark must be linked to the $2^{\text {nd }}$ mark. |
| Red shift measurements show that galaxies are continuing to move apart / away (1) |
| CMBR originated from waves / gamma rays (produced at the birth of the Universe) which have stretched (1) Don't accept reference to any other em wave |
| which means the Universe (space) is expanding / does not look the same over time (1) Don't accept started from the same point |
| Either the 3rd mark must be linked to the $1^{\text {st }}$ mark or the $2^{\text {nd }}$ mark. | \& 1

3

3
3

$[7]$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& stion \& \& Marking details \& Marks \\
\hline 5. \& \& (i) \& \begin{tabular}{l}
Conversion of 1.5 GHz to \(1.5 \times 10^{9}\) or \(3 \times 10^{8}\) to \(0.3 \mathrm{Gm} / \mathrm{s}\) (1) \\
Substitution \& manipulation (1) \\
Answer \(=0.2[\mathrm{~m}]\) (1) \\
Award 2 marks for answer of \(2 \times 10^{8}[\mathrm{~m}]\) \\
Any other answer of \(2 \times 10^{n}\) can be awarded a maximum of \\
2 marks if clear workings shown. \\
Conversion of 35 km to 35000 m (1) \\
Substitution \& manipulation (1) \\
Answer \(=1.17 \times 10^{-4}[\mathrm{~s}](1)\) Accept \(1.2 \times 10^{-4}\) [s] Don't accept \(1.16 \times 10^{-4}[\mathrm{~s}]\) \\
Award 2 marks for answer of \(1.17 \times 10^{-7}[\mathrm{~s}]\) \\
Award 1 mark for answer of \(1.16 \times 10^{-7}\) [s] \\
Any other answer of \(1.17 \times 10^{-n}\) can be awarded a maximum of 2 marks if clear workings shown.
\end{tabular} \& 3

3

[6]

\hline 6. \& (a)

(b) \& (i) \& | It provides power (electricity) to consumers / users (1) (accept 2 named consumers e.g. schools, hospitals, factories, houses) |
| :--- |
| and maintains a reliable supply / is capable of responding to fluctuating demand / caters for a power station breakdown (1) Don't accept reference to efficiency $\text { Energy }=P \times t=\frac{5400(1)}{60(1)} \times 0.95(1)=85.5[\mathrm{MWh}]$ |
| Award 2 marks for an answer of 5130 [MWh] Award 2 marks for an answer of 90 |
| EITHER: |
| 85.5 MWh (ecf) $=85500 \mathrm{kWh}(1) \mathrm{Cost}=85500 \times[£] 0.05$ |
| (1) $=[£] 4275(1) \frac{650000}{4275}=152[\text { weeks }](1)$ |
| OR: $\text { 85.5 MWh (ecf) }=85500 \mathrm{kWh}(1) \text { Cost }=85500 \times 5[\mathrm{p}]$ $=427500[p](1) 65000000(1) \div 427500=152 \text { [weeks] (1) }$ |
| OR: $\begin{aligned} & (650000 \div 0.05)(1)=13000000[\mathrm{kWh}](1) \\ & 13000000 \div 85500(1 \text {-conversion })=152 \text { [weeks] (1) } \end{aligned}$ |
| Accept an answer of 153 [weeks] if correct workings shown | \& 2

3
3
4

\hline
\end{tabular}

GCSE Science - Physics 2 Mark Scheme

January 2015
FOUNDATION TIER

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
increases (1) \\
decreases (1) \\
no change (1)
\[
\frac{18}{30(1)}=0.6[s](1)
\] \\
First mark is for dividing by 30
\[
\begin{aligned}
\& 1200 \times 75(1)=90000[\mathrm{~J}](1) \\
\& \frac{30}{5}(1)=6\left[\mathrm{~m} / \mathrm{s}^{2}\right](1)
\end{aligned}
\]
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marks \\
3 \\
2 \\
2 \\
2 \\
[9]
\end{tabular}} \\
\hline 1. \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \& \\
\hline 2. \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

(iii)

 \&

current

current

voltage

subs $\frac{12}{8}(1)=1.5[A]$ (1)

3 [A] ecf-answer must be double the answer to (b)(i)

12 (1) $\times 1.5$ (1)(ecf must be $12 \times$ answer to (b)(i))

$$
=18[\mathrm{~W}](1)
$$

reduces current (1) by factor of 4 / to 0.75 A (1)

Don't accept slows down current
\end{tabular} \& 3

2
1
3

2
$[11]$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks \\
\hline 3. \& (a)
(b)
(c) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
15[\mathrm{~m} / \mathrm{s}](1)
\] \\
\(900[\mathrm{~kg} \mathrm{~m} / \mathrm{s}]\) (1) ecf
\[
\frac{900(\text { ecf })}{6}=150(1) \mathrm{N} \text { or } \mathrm{kg} \mathrm{~m} / \mathrm{s}^{2} \text { or Newtons (1) }
\] \\
The same change in momentum happens in a shorter time / change in momentum per second is greater / increased deceleration (1) so force increases / is greater (1) The \(2^{\text {nd }}\) mark must be linked to the \(1^{\text {st }}\) mark. \\
Any \(2 \times(1)\) from: \\
Air bag, crumple zone, head rest, passenger cage, ABS (anti-locking) brakes, laminated windscreen, collapsible steering-wheel / side impact bars / child safety seat \\
Do not accept flexible bumper / crumble zone / crash zone / head support \\
Question total
\end{tabular} \& 1
1
2
2
2
2
2 \\
\hline 4. \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\([\mathrm{He}] 2\) (1) [Fe] 56 (1) \\
H or hydrogen \\
\({ }_{82}^{207} \mathrm{~Pb}\) \\
\({ }_{36}^{90} \mathrm{Kr}+{ }_{56}^{144} \mathrm{Ba}(1) \underline{2}_{0}^{1} \mathrm{n}(1)\) \\
Do not accept krypton and barium written in full \\
Do not accept \(\mathrm{Kr}_{36}^{90}\) or \(\mathrm{Ba}_{56}^{144}\) \\
slows down \\
absorb \\
Question total
\end{tabular} \& 2
1
1
2

2
$[8]$

\hline
\end{tabular}

Question			Marking details	Marks
5.	(a)		To smooth out random fluctuations in data / even out variations / reduces [the effect of] anomalies Accept less anomalies / odd results / closer estimate Do not accept prevents anomalies / more reliable / more accurate	1
	(b)		Plots (allow $\pm 1 / 2$ small square division) (2) -1 for each error to a maximum of 2 . Smooth curve of best fit drawn from last given point (4 rolls) onwards but must encompass all points (1)	3
	(c)	(i)	About 4 [rolls]. Accept any x where $4>x>3.6$ inclusive	1
		(ii)	Method shown on grid (1)[line across or down probably at 200] ~3.8 [rolls] (1-value taken from their graph ± 0.1)	2
		(iii)	Allows (more) precise / accurate value to be obtained / to nearest 0.1 of a roll Accept graph is more accurate Don't accept exact value / more reliable value	1
		(iv)	7.6 (1-value taken from graph ± 0.1) value is approximately 2 half-lives (1) Don't accept $1 / 4$ of original value	2
	(d)	(i)	Identifying 3 half-lives (1) $\frac{210}{3}=70[\mathrm{~s}]$ (1-ans) Don't accept $80 \rightarrow 40 \rightarrow 20 \rightarrow 10$ without any qualification	2
		(ii)	5 half-lives required (1) $5 \times 70(\mathrm{ecf})=350$ [s] (1)	2
		(iii)	becquerel, accept bq, Bq , any reasonable spelling	1
			Question total	[15]

Question		Marking details	Marks
6.	(a) (b)	$\frac{(800-200)(1)}{80(1)}=7.5(1-\mathrm{ans})\left[\mathrm{m} / \mathrm{s}^{2}\right]$ Award 1 mark for 600 anywhere Indicative content: When the parachute is opened, a big air resistance force is produced that acts upwards. This is bigger than the person's weight (downwards), the resultant force is upwards and so the person decelerates. As the speed decreases, the air resistance (or resultant force) decreases and the deceleration decreases. Eventually the speed becomes so low that the air resistance and weight become equal and the person falls at a (low) constant speed. 5 - 6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks The candidate does not make any attempt or give a relevant answer worthy of credit. Question total	3 6
		FOUNDATION TIER PAPER TOTAL	[60]

HIGHER TIER

Question			Marking details	Marks
1.	(a)	To smooth out random fluctuations in data / even out variations / reduces [the effect of] anomalies Accept less anomalies / odd results / closer estimate Do not accept prevents anomalies / more reliable / more accurate		1
	(b)		Plots (allow $\pm 1 / 2$ small square division) (2) -1 for each error to a maximum of 2 . Smooth curve of best fit drawn from last given point (4 rolls) onwards but must encompass all points (1)	3
	(c)	(i) (ii)	About 4 [rolls]. Accept any x where $4>x>3.6$ inclusive	1
			Method shown on grid (1)[line across or down probably at 200] ~3.8 [rolls] (1-value taken from their graph ± 0.1)	2
		(iii)	Allows (more) precise / accurate value to be obtained / to nearest 0.1 of a roll Accept graph is more accurate Don't accept exact value / more reliable value	1
		(iv)	7.6 (1-value taken from graph ± 0.1) value is approximately 2 half-lives (1) Don't accept $1 / 4$ of original value	2
	(d)	(i)	Identifying 3 half-lives (1) $\frac{210}{3}=70[\mathrm{~s}]$ (1-ans) Don't accept $80 \rightarrow 40 \rightarrow 20 \rightarrow 10$ without any qualification	2
		(ii) (iii)	5 half-lives required (1) 5×70 (ecf) $=350$ [s] (1)	2
			becquerel, accept bq, Bq , any reasonable spelling	1
			Question total	[15]

Question			Marking details	Marks
2.	(a) (b)		$\frac{(800-200)(1)}{80(1)}=7.5(1-\mathrm{ans})\left[\mathrm{m} / \mathrm{s}^{2}\right]$ Award 1 mark for 600 anywhere	3
		(i)	Indicative content:	6
			When the parachute is opened, a big air resistance force is produced that acts upwards. This is bigger than the person's weight (downwards), the resultant force is upwards and so the person decelerates. As the speed decreases, the air resistance (or resultant force) decreases and the deceleration decreases. Eventually the speed becomes so low that the air resistance and weight become equal and the person falls at a (low) constant speed.	
			5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	
			3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.	
		(ii)	0 marks The candidate does not make any attempt or give a relevant answer worthy of credit. Bigger parachute / surface area (1) To give a bigger air resistance / upward force (1) To equal the [bigger] weight (1) Either the $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark or the $3^{\text {rd }}$ mark must be linked to the $2^{\text {nd }}$ mark.	3
			Question total	[12]

Question			Marking details	Marks
3.	(a)	(i)	$P=I^{2} R \quad 18=I^{2} 8 \text { (1-sub), } I^{2}=\frac{18}{8} \text { (1-manip), }$ $I=1.5$ [A] (1-answer) Award 2 marks for an answer of 2.25 [A] Award 1 mark if substitution precedes manipulation.	3
		(ii)	$3[A]$ ecf - answer must be double the answer to (i)	1
		(iii)	Either $V=I R \quad V=1.5(\mathrm{ecf}) \times 8(1-\mathrm{sub}),=12[\mathrm{~V}](1)$ ecf must be $8 \times$ answer to (i) Or accept $P=V I$ so $V=\frac{18}{1.5}$ (ecf) $(1-$ sub+manip $)=12$ [V] ecf applies to 1.5 the value used must be the answer to (i)	2
	(b)	(i)	Either: Supply voltage is unchanged / current (don't accept amps) has decreased (1) so the circuit resistance must have increased. (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark. OR voltage across each bulb has decreased (1) and so the current (don't accept amps) has decreased / but the resistance of each bulb has not changed (1) The $2^{\text {nd }}$ mark must be linked to the $1^{\text {st }}$ mark.	2
		(ii)	$P=I^{2} R=0.75^{2} \times 8(1-\mathrm{sub})=4.5[\mathrm{~W}](1)$ Or accept $P=V I=6$ (ecf from (a)(iii)) $\times 0.75$ ($1-$ sub) $=4.5[\mathrm{~W}]$ (1) Or accept $P=V^{2} / R=6^{2}$ (ecf from (a)(iii)) / $8(1-$ sub $)$ $=4.5[\mathrm{~W}](1)$	2
		(iii)	Lamps are more powerful (brighter) [in parallel] / if one fails then the others will still work / they can be switched independently Accept they have the supply voltage across them	1
			Question total	[11]

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk website: www.wjec.co.uk

